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Efficient and Accurate Full-Wave Analysis of the
Open-Ended Coaxial Cable

Gaetano Panatriello, Luigi Verolino, and Gaetano Vitolo

Abstract—An efficient implementation of the full-wave open-
ended-coaxial-line analysis is presented in this paper. The involved
integrals are approached in such a way that the admittance is ac-
curately calculated. Moreover, the calculus time is noticeably re-
duced. This technique is particularly useful when repeated anal-
ysis are performed as occurs, e.g., when measuring permittivity.
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I. INTRODUCTION T,

HE open-ended coaxial probe is a useful tool to perforr
permittivity measurements [1]-[6] since it offers many ad
vantages with respect to classical methods: the measure is n
invasive and requires a small sensing area in a broad band. F
mittivity measurement requires the analysis of the reflection €O | brobe description
efficient of the fundamental mode when the probe is in contact pron.
Wlt,\::r]]; ;T:J?:]%rrlzlalg;:g;éizta the problem by using approximateThe aim of this paper is to illustrate a fast and accurate tech-

formulations; some ofthem[1], [7] use an equivalentlumped—erl]—Ique to analyze the open-ended coaxial probe. A full-wave

ement circuit, others [8] use a virtual line model. The field anaiil-nalySIS is performed based on a modal representation of the

ysis is approached in different ways: the main problem is to dee_:ld inside the cable and on a spectral one in the dielectric

. o oo ~~ _“medium. This formulation has been used by many authors, [12],
scribe the electromagnetic field on the termination plane: so 95] but it could not be used to perform online permittivity mea-
autht_)rs [9]. [10] usgonlythefundamental mode, others[11], [1. rements because the evaluation of the integrals involved is too
take into account higher order modes. The drawback of the fi

trat is that ‘mat del lid only i ict e consuming. In this paper, a technique is shown to calculate
strategy IS that approximale models are vaild only In restrictgge ,, accurately and efficiently so that the admittance calculus
frequency and probe-dimension range. The second way to

#Photiceably reduced.
proach the problem is more general, but, up to now, has been too y

time consuming in order to perform online measurements.

A third strategy has been proposed by Studlgl.[13], and
Andersonret al.[14]. They assume that the probe admittance is Consider the probe depicted in Fig. 1. The coaxial cable (
a rational function of the square root of the product permittivitiegion) is filled by a dielectric of permittivity.. The cable is
frequency, whose coefficients are determined by calculating thgncated at = 0, is indefinite toward the direction of the neg-
admittance itself for various dielectrics. The drawback of th@{ivez, and s in contact with a dielectric medium characterized
technique is that it has some limitations regarding the permRy Permittivity . Let us suppose that the fundamental-mode is
tivity range and, in principle, it does not work in the presence #fPinging fromz = —oc.

conductivity. Moreover, the coefficients provided are valid for N order to obtain an equation for the probe admittance, we

restricted geometries. can represent the tangential field components irtlzad A re-
gions with a suitable base and match them on the interface. Due
to the azimuthal symmetry of the structure and of the excitation,

Manuscript received August 3, 1999; revised December 22, 2000. the f'eld_ doe_s not depend upon theoordinate and itis TM.

G. Panariello was with the Department of Electronic and Telecommunica- The field in theC region can be represented by the modal
tion Engineering, University of Naple; Federico Il, |-80125 Naples, Italy. He iéxpansion and Onlﬁ[‘Mon modes must be considered [11] as
now with the Department of Automation, Electromagnetism, Information Eﬁ_ I .
gineering, and Industrial Mathematics, University of Cassino, 03043 Cassi 9 ows:
Italy. ) 0 )

L. Verolino is with the Department of Electrical Engineering, University of Ep :wo(p)e_]koz + Z cnz/)n(p)e]k”" (1)
Naples Federico Il, I-80125 Naples, Italy (e-mail: verolino@unina.it).

G. Vitolo was with the Department of Electronic and Telecommunication En-
gineering, University of Naples Federico Il, 1-80125 Naples, Italy. He is now - o -
with Lucent Technologies, 00148 Rome, Italy. H, =Yotpo(p)e 7% — Z YoCntn(p)e?™=® 2

Publisher Item Identifier S 0018-9480(01)05039-6.

T

Il. ADMITTANCE CALCULUS

n=0

n=0

0018-9480/01$10.00 © 2001 IEEE



PANARIELLO et al. EFFICIENT AND ACCURATE FULL-WAVE ANALYSIS OF THE OPEN-ENDED COAXIAL CABLE 1305

where the modal functions are defined by the following equa- Equations (12) and (13) must be simultaneously solved to
tions: obtain the reflection coefficient,. Equation (13) can be inter-

1 preted as an inverse Hankel transform [16] and, therefore,
Po(p) = No— ®3)

p W oo
, , A(w) = i 50w [\po(w) + ) en W (w) (14)

r‘/)n(p) =Np |J1 (=) Yo (’Vn) =Y (=) J (’Yn) (4) n=0

(30 Yot =3 () 4 where
~, are the eigenvalues, which are solutions of the following: b

Vo) = [ () slwp) dp (15)

b b
i (02 ) Vo) =% (2 ) o) ) o |
a a Algebraic manipulations enables us to write that
and the normalizing constants providing the orthogonal prop-

erty v, (w) = Anaf,(wa) (16)
, where
X
/a pn(P)m(p) dp = b, m ©  fale) == 2 [Jo(w)Jo(w) - Jo(fvn)Jo(m)} (17)
are the following: r = b/a, vo = 0, and the constantd,, are related taV,,. Thus,
() we can multiply (12) byp,,,(p) and integrate over the aper-
No = [111(1’/“)] () ture; considering orthonormal properties of the modal functions
y —(1/2) (6) and substituting the expression fafw) given by (14), we
N, — T Jy (’Vn) . (8) obtain
"7 V2 | 3 (vbfa) R .
l—c nAnArnInrn = ] m A Arn-[ oy
The field in the A region can be represented in the spectrgﬂ' ekma + ;::OC ckoa 0 0
domairl. The Hankel-transformgd longitudinal .elgc.tricfielq ['16] form=0,1,... (18)
satisfying the Helmholtz equation under an infinity radiation
condition is where
Sz(w, Z) = A(w)Cij’a(w)Z (9) Inm, = /0 \/% fn(x)fm(x) d.’L’ (19)

wheref(w) = vVk?* — w?, A(w) is an unknown function and gng for shortness, we called= ka. Let
the square-root branch is the one that provides the negative

-C 6n m
imaginary part§{ < /3 < 2x). The field transverse compo- My = FT + AnAnd, (20)
nents can be expressed by means of the longitudinal ones, and Fond
the result is as follows: bn, = AnAolno. (21)

B o—i i 3(w) A —jB(w)= 1 From (18), we finally obtain the following equation that pro-
! J/o Alw)A(w)e Juwp) dw (10) vides the normalized aperture admittance:

. 8wz l—co ckoay o T 1

H, :jwe/o A(w)e 02 I (wp) dw. (11) Y = e T(Aofoo -b"M b)- (22)
Tangential-field components are continuous across the interFrom @ numerical point-of-view, the most delicate point is

face, i.e., for: = 0. Moreover, the tangential electric-field com-the evaluation of integrals (19), and we could not find an ex-

ponent vanishes on the flange and on the inner conductor of haustive discussion in the literature on their calculus; the aim of

coaxial cable, i.e., fob < p andp < a. The following equa- Section lllis to address this problem.

tions are obtained by matching the representations of the field

components (1), (2), (10), and (11): [ll. INTEGRAL CALCULUS
) o The integrals of (19) are defined over an infinite range; the
ch/o A(w) Jy (wp) dw integrand functions decay, for large asz—2, exhibiting an
oo oscillatory behavior due to the Bessel functidgn Moreover,
= Youo(p) — Z Yonthn(p), ifa<p<b (12) they have a singularity-like behavior (a true singularity if the
n=0 medium under test is lossless) whehapproache®{?}. For

o0 the aforementioned, it is convenient to transform them to obtain
j/ Blw) A(w)Jy (wp) dw a less cumbersome computation.

0 First of all, we extract the asymptotic behavior from the in-
tegrand functions; more precisely, noting that, for largehe
following approximation holds:

0, if p<a
=< Yolp) + Y cathulp), fa<p<h (13)
n=0

x K2
’ i+ 23
0, if b<p. VK2 — x2 / < * 2372) (23)
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we obtain

Lonm = jloo(’ynv ’Vm) + 6Inm (24)

where we introduced the notations

1%y, ) = <1+ ) () fm(z) dz (25)
Stom = m[m <1+§>]
Fal@) fm() d (26)

Note that the integrand function of (26) decays as fast&s

As a second task, we extract the singularity-like behavior of C
the integrand function of (26), adding and subtracting from the 10

integrand the following function:

4 mx_ 2 eIV (27)

At /At
1 0
50

40 F
30 F

20 : .

mode number

Fig. 2. Gain in evaluating matrid{, At,, and At, are, respectively, the
elapsed times to calculate integrals (19) and (24).

where A4 is a suitable constant chosen to exactly subtract the
singularity-like behavior. The function (27) can be analytically AL /At

integrated and the result jsiec—7*~.

Note that the moré| decreases, the more integrals (26) are

small compared with (25) since approximation (23) is always
more exact. Therefore, it is very important to accurately cal-
culate (25). However, the integral (25) suffers from the same
problems of (19) and, therefore, a numerical evaluation is rather
difficult. In the following, we show a technique to solve this
problem. We point out that (19) can be expressed by a sum of
integrals not depending on permittivity and, thus, by integrals

that can be evaluated once for a fixed geometry.
If we examine the expressigh, we can note that, for, m >

0, butn # m, (25) can be expressed by summing integrals of

simpler functions as follows:

> 1
(v, ) = / o a— Jo(ein ) Jo(e2) dx (28)
0 —In i
106 106 104 103 102
whereag = (1, 1), &y = (1, r), andas = (r, 7). Moreover, o , o
using the equality 6.684.1 [17] and [18, eq. (32)], (28) becomes imaginary part of relative permittivity

1 U

Z(Yn, ) = —W

Ho [y d(ci, 0)] d6 (29)

whereH, is the zeroth-order Struve function, and

d(a;, 6) = \/%‘21 + oy — 201040 COS 6. (30)

In order to calculatd®(v,,, v,), I°(v,, 0), andI>(0, 0),
we perform the following limits:

IOO(’an ’Vn) = . 111_2/ IOO(’an ’Vm) (31)
1%°(v,, 0) = limo (v, vm) (32)
17°(0, 0) = hIn I (Vs Ym)- (33)

Tn—
Y —>0

Fig. 3. Singularity behavior wher&t, andAt, are, respectively, the elapsed
times to calculate (19) without and with the singularity extraction.

The results are summarized in the Appendix. It can be noted
that the integrals (25) are calculated by summing integrals of
well-behaved functions over a compact range. Moreover, every
integral depends only on the geometry and, thus, the calculus is
needed only once for any given probe.

To estimate the gain obtained with this technique, we evalu-
ated the matritM for f = 10 GHz,e = (3—50.1)eg, e = 2.1¢g
(Teflon), b/a = 3.268, Zy = 50 € considering a number of
modes from 1 up to 40. The improvement obtained with the
technique presented here is significant, as shown in Fig. 2. The
calculus is 20 time faster even with ten modes. Fig. 3 demon-
strates that the singularity-like behavior gives less cumbersome
computation and problems arise only when the losses are very
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Fig. 4. Real part of normalized admittance versus the mode number. Fig. 6. Normalized admittance relative error (Teflon).
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Fig. 7. Normalized admittance relative error (saline solution).
Fig. 5. Imaginary part of normalized admittance versus the mode number.

The error depends on the permittivity of the medium. To eval-
small. The behavior for large is the main reason for the diffi- uate this, we analyze a very different one: saline solutiéV

culties in evaluating (19). [19]. It exhibits a very high permittivity and, since it is a ionic
solution, a conductivity. The relative error is depicted by Fig. 7:
IV. RESULTS AND DISCUSSION it is higher than the Teflon case. Moreover, we can note that, as

To examine the validity of the formulation, some numericatz)XpeCted’ the rational function formulation error is very high at

simulations have been performed. First of all, we investigated t %V frequencies, Where the conductivity of the ”?ed.'“m IS SIg-
convergence of the admittance calculus. We tried to evaluate écant. Therefore,. it cannot be used to analyze ionic solutions
number of modes needed to accurately calculate the admittal %(gz biological media.
this is not an easy task. In order to answer this question, we cal-
culated the admittance with the following data= 2.1 (Teflon),
f = 10GHz,b/a = 3.268,andZ, = 50 2, varyingthe mode  This paper has addressed the accurate and efficient evaluation
number consideredto representthe field. The results are depiatéthe admittance of the flanged coaxial cable. In Section Il (de-
inFigs. 4 and5. These figures showthatwe can assume the adaits in the Appendix), the calculus of the involved integrals is
tance calculated with 100 modes to be the reference one. deeply discussed and a technique is presented to evaluate them.
Fig. 6 shows the relative errors obtained with a smaller numbgne reduction of the calculus time is considerably high, even
of modes and with the rational function expression [14]. Note thaith a low number of modes. The accuracy is very high since
the rational function gives an error just a bit bigger than that othe permittivity-dependent terms are small compared with the
tained with six modes, despite the expression being quite simpigometry-dependent ones, evaluated integrating well-behaved

V. CONCLUSIONS AND PERSPECTIVES
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functions over a compact range. Moreover, if a probe facingt4 and’; are, respectively, the Struve function of zeroth and
stratified medium is concerned, the formulation leads to integriérst orders and

tion of functions having exactly the same asymptotic behavior. 4
Therefore, the integral evaluation discussed in Section 1l is still E(az) = — (44)
valid in the more general case. "
In Section 1V, some result are presented, showing that ten £lan) = 2(r — 1) El_ 4r (45)
modes are sufficient to describe the admittance of the probe with T (r—1)2
a small error.
We hope, in the near future, to employ these results to de- Flan) = 32r° (46)
velop a fast and accurate inversion algorithm in order to obtain 3m
permittivity from measured admittance data values. 2r — 1) 4y
Fla))=——24 (1 +7’2) Fl-——s
APPENDIX ST (r=1)
| |NTEGR/.AL CaLcuLUS 'RESULTS | B 2(r — 1) (142K |- 4y a7)
The following equations summarize the results of the manip- 37 (r—1)2

ulations described in Section IlI: o )
) where K and ' are the complete elliptic integrals of the first
I%°(m, ) = Z)\(i) Tlm, @) + 2D Ty, i) (34) and second kinds [20].

nm mn
=0
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