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Efficient and Accurate Full-Wave Analysis of the
Open-Ended Coaxial Cable

Gaetano Panariello, Luigi Verolino, and Gaetano Vitolo

Abstract—An efficient implementation of the full-wave open-
ended-coaxial-line analysis is presented in this paper. The involved
integrals are approached in such a way that the admittance is ac-
curately calculated. Moreover, the calculus time is noticeably re-
duced. This technique is particularly useful when repeated anal-
ysis are performed as occurs, e.g., when measuring permittivity.

Index Terms—Coaxial cable, permittivity measurements, termi-
nation.

I. INTRODUCTION

T HE open-ended coaxial probe is a useful tool to perform
permittivity measurements [1]–[6] since it offers many ad-

vantages with respect to classical methods: the measure is non-
invasive and requires a small sensing area in a broad band. Per-
mittivity measurement requires the analysis of the reflection co-
efficient of the fundamental mode when the probe is in contact
with the material under test.

Many authors approached the problem by using approximate
formulations; some of them [1], [7] use an equivalent lumped-el-
ement circuit, others [8] use a virtual line model. The field anal-
ysis is approached in different ways: the main problem is to de-
scribe the electromagnetic field on the termination plane: some
authors [9], [10]useonly the fundamentalmode,others [11], [12]
take into account higher order modes. The drawback of the first
strategy is that approximate models are valid only in restricted
frequency and probe-dimension range. The second way to ap-
proach the problem is more general, but, up to now, has been too
time consuming in order to perform online measurements.

A third strategy has been proposed by Stuchlyet al.[13], and
Andersonet al. [14]. They assume that the probe admittance is
a rational function of the square root of the product permittivity
frequency, whose coefficients are determined by calculating the
admittance itself for various dielectrics. The drawback of this
technique is that it has some limitations regarding the permit-
tivity range and, in principle, it does not work in the presence of
conductivity. Moreover, the coefficients provided are valid for
restricted geometries.
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Fig. 1. Probe description.

The aim of this paper is to illustrate a fast and accurate tech-
nique to analyze the open-ended coaxial probe. A full-wave
analysis is performed based on a modal representation of the
field inside the cable and on a spectral one in the dielectric
medium. This formulation has been used by many authors, [12],
[15], but it could not be used to perform online permittivity mea-
surements because the evaluation of the integrals involved is too
time consuming. In this paper, a technique is shown to calculate
them accurately and efficiently so that the admittance calculus
is noticeably reduced.

II. A DMITTANCE CALCULUS

Consider the probe depicted in Fig. 1. The coaxial cable (
region) is filled by a dielectric of permittivity . The cable is
truncated at , is indefinite toward the direction of the neg-
ative , and is in contact with a dielectric medium characterized
by permittivity . Let us suppose that the fundamental-mode is
impinging from .

In order to obtain an equation for the probe admittance, we
can represent the tangential field components in theand re-
gions with a suitable base and match them on the interface. Due
to the azimuthal symmetry of the structure and of the excitation,
the field does not depend upon thecoordinate and it is TM.

The field in the region can be represented by the modal
expansion and only modes must be considered [11] as
follows:

(1)

(2)
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where the modal functions are defined by the following equa-
tions:

(3)

(4)

are the eigenvalues, which are solutions of the following:

(5)

and the normalizing constants providing the orthogonal prop-
erty

(6)

are the following:

(7)

(8)

The field in the region can be represented in the spectral
domain. The Hankel-transformed longitudinal electric field [16]
satisfying the Helmholtz equation under an infinity radiation
condition is

(9)

where , is an unknown function and
the square-root branch is the one that provides the negative
imaginary part ( ). The field transverse compo-
nents can be expressed by means of the longitudinal ones, and
the result is as follows:

(10)

(11)

Tangential-field components are continuous across the inter-
face, i.e., for . Moreover, the tangential electric-field com-
ponent vanishes on the flange and on the inner conductor of the
coaxial cable, i.e., for and . The following equa-
tions are obtained by matching the representations of the field
components (1), (2), (10), and (11):

if (12)

if

if

if

(13)

Equations (12) and (13) must be simultaneously solved to
obtain the reflection coefficient . Equation (13) can be inter-
preted as an inverse Hankel transform [16] and, therefore,

(14)

where

(15)

Algebraic manipulations enables us to write that

(16)

where

(17)

, , and the constants are related to . Thus,
we can multiply (12) by and integrate over the aper-
ture; considering orthonormal properties of the modal functions
(6) and substituting the expression for given by (14), we
obtain

for (18)

where

(19)

and for shortness, we called . Let

(20)

(21)

From (18), we finally obtain the following equation that pro-
vides the normalized aperture admittance:

(22)

From a numerical point-of-view, the most delicate point is
the evaluation of integrals (19), and we could not find an ex-
haustive discussion in the literature on their calculus; the aim of
Section III is to address this problem.

III. I NTEGRAL CALCULUS

The integrals of (19) are defined over an infinite range; the
integrand functions decay, for large, as , exhibiting an
oscillatory behavior due to the Bessel function. Moreover,
they have a singularity-like behavior (a true singularity if the
medium under test is lossless) whenapproaches . For
the aforementioned, it is convenient to transform them to obtain
a less cumbersome computation.

First of all, we extract the asymptotic behavior from the in-
tegrand functions; more precisely, noting that, for large, the
following approximation holds:

(23)
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we obtain

(24)

where we introduced the notations

(25)

(26)

Note that the integrand function of (26) decays as fast as.
As a second task, we extract the singularity-like behavior of

the integrand function of (26), adding and subtracting from the
integrand the following function:

(27)

where is a suitable constant chosen to exactly subtract the
singularity-like behavior. The function (27) can be analytically
integrated and the result is .

Note that the more decreases, the more integrals (26) are
small compared with (25) since approximation (23) is always
more exact. Therefore, it is very important to accurately cal-
culate (25). However, the integral (25) suffers from the same
problems of (19) and, therefore, a numerical evaluation is rather
difficult. In the following, we show a technique to solve this
problem. We point out that (19) can be expressed by a sum of
integrals not depending on permittivity and, thus, by integrals
that can be evaluated once for a fixed geometry.

If we examine the expression, we can note that, for
, but , (25) can be expressed by summing integrals of

simpler functions as follows:

(28)

where , , and . Moreover,
using the equality 6.684.1 [17] and [18, eq. (32)], (28) becomes

(29)

where is the zeroth-order Struve function, and

(30)

In order to calculate , , and ,
we perform the following limits:

(31)

(32)

(33)

Fig. 2. Gain in evaluating matrixM , �t , and�t are, respectively, the
elapsed times to calculate integrals (19) and (24).

Fig. 3. Singularity behavior where�t and�t are, respectively, the elapsed
times to calculate (19) without and with the singularity extraction.

The results are summarized in the Appendix. It can be noted
that the integrals (25) are calculated by summing integrals of
well-behaved functions over a compact range. Moreover, every
integral depends only on the geometry and, thus, the calculus is
needed only once for any given probe.

To estimate the gain obtained with this technique, we evalu-
ated the matrix for GHz, ,
(Teflon), , considering a number of
modes from 1 up to 40. The improvement obtained with the
technique presented here is significant, as shown in Fig. 2. The
calculus is 20 time faster even with ten modes. Fig. 3 demon-
strates that the singularity-like behavior gives less cumbersome
computation and problems arise only when the losses are very
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Fig. 4. Real part of normalized admittance versus the mode number.

Fig. 5. Imaginary part of normalized admittance versus the mode number.

small. The behavior for large is the main reason for the diffi-
culties in evaluating (19).

IV. RESULTS AND DISCUSSION

To examine the validity of the formulation, some numerical
simulations have been performed. First of all, we investigated the
convergence of the admittance calculus. We tried to evaluate the
number of modes needed to accurately calculate the admittance:
this is not an easy task. In order to answer this question, we cal-
culated the admittance with the following data: (Teflon),

GHz, , and , varying the mode
number considered to represent the field. The results are depicted
inFigs.4and5.These figuresshowthatwecanassumetheadmit-
tance calculated with 100 modes to be the reference one.

Fig. 6 shows the relative errors obtained with a smaller number
ofmodesandwith the rational functionexpression [14].Note that
the rational function gives an error just a bit bigger than that ob-
tained with six modes, despite the expression being quite simple.

Fig. 6. Normalized admittance relative error (Teflon).

Fig. 7. Normalized admittance relative error (saline solution).

The error depends on the permittivity of the medium. To eval-
uate this, we analyze a very different one: saline solution
[19]. It exhibits a very high permittivity and, since it is a ionic
solution, a conductivity. The relative error is depicted by Fig. 7:
it is higher than the Teflon case. Moreover, we can note that, as
expected, the rational function formulation error is very high at
low frequencies, where the conductivity of the medium is sig-
nificant. Therefore, it cannot be used to analyze ionic solutions
like biological media.

V. CONCLUSIONS ANDPERSPECTIVES

This paper has addressed the accurate and efficient evaluation
of the admittance of the flanged coaxial cable. In Section III (de-
tails in the Appendix), the calculus of the involved integrals is
deeply discussed and a technique is presented to evaluate them.
The reduction of the calculus time is considerably high, even
with a low number of modes. The accuracy is very high since
the permittivity-dependent terms are small compared with the
geometry-dependent ones, evaluated integrating well-behaved
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functions over a compact range. Moreover, if a probe facing a
stratified medium is concerned, the formulation leads to integra-
tion of functions having exactly the same asymptotic behavior.
Therefore, the integral evaluation discussed in Section III is still
valid in the more general case.

In Section IV, some result are presented, showing that ten
modes are sufficient to describe the admittance of the probe with
a small error.

We hope, in the near future, to employ these results to de-
velop a fast and accurate inversion algorithm in order to obtain
permittivity from measured admittance data values.

APPENDIX

INTEGRAL CALCULUS RESULTS

The following equations summarize the results of the manip-
ulations described in Section III:

(34)

where

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

and are, respectively, the Struve function of zeroth and
first orders and

(44)

(45)

(46)

(47)

where and are the complete elliptic integrals of the first
and second kinds [20].
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